Cross-Task Weakly Supervised Learning From Instructional Videos
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337182" target="_blank" >RIV/68407700:21730/19:00337182 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/CVPR.2019.00365" target="_blank" >https://doi.org/10.1109/CVPR.2019.00365</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2019.00365" target="_blank" >10.1109/CVPR.2019.00365</a>
Alternative languages
Result language
angličtina
Original language name
Cross-Task Weakly Supervised Learning From Instructional Videos
Original language description
In this paper, we investigate learning visual models for the steps of ordinary tasks using weak supervision via instructional narrations and an ordered list of steps instead of strong supervision via temporal annotations. At the heart of our approach is the observation that weakly supervised learning may be easier if a model shares components while learning different steps: `pour egg' should be trained jointly with other tasks involving `pour' and `egg'. We formalize this in a component model for recognizing steps and a weakly supervised learning framework that can learn this model under temporal constraints from narration and the list of steps. Past data does not permit systematic studying of sharing and so we also gather a new dataset, CrossTask, aimed at assessing cross-task sharing. Our experiments demonstrate that sharing across tasks improves performance, especially when done at the component level and that our component model can parse previously unseen tasks by virtue of its compositionality.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-3294-5
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
9
Pages from-to
3532-3540
Publisher name
IEEE
Place of publication
—
Event location
Long Beach
Event date
Jun 15, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000529484003070