All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weakly Supervised Human-Object Interaction Detection in Video via Contrastive Spatiotemporal Regions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356152" target="_blank" >RIV/68407700:21730/21:00356152 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV48922.2021.00186" target="_blank" >https://doi.org/10.1109/ICCV48922.2021.00186</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV48922.2021.00186" target="_blank" >10.1109/ICCV48922.2021.00186</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weakly Supervised Human-Object Interaction Detection in Video via Contrastive Spatiotemporal Regions

  • Original language description

    We introduce the task of weakly supervised learning for detecting human and object interactions in videos. Our task poses unique challenges as a system does not know what types of human-object interactions are present in a video or the actual spatiotemporal location of the human and the object. To address these challenges, we introduce a contrastive weakly supervised training loss that aims to jointly associate spatiotemporal regions in a video with an action and object vocabulary and encourage temporal continuity of the visual appearance of moving objects as a form of self-supervision. To train our model, we introduce a dataset comprising over 6.5k videos with human-object interaction annotations that have been semi-automatically curated from sentence captions associated with the videos. We demonstrate improved performance over weakly supervised baselines adapted to our task on our video dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICCV2021: Proceedings of the International Conference on Computer Vision

  • ISBN

    978-1-6654-2812-5

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    11

  • Pages from-to

    1825-1835

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Montreal

  • Event date

    Oct 11, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000797698902003