Look for the Change: Learning Object States and State-Modifying Actions from Untrimmed Web Videos
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00358883" target="_blank" >RIV/68407700:21730/22:00358883 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/CVPR52688.2022.01357" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.01357</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52688.2022.01357" target="_blank" >10.1109/CVPR52688.2022.01357</a>
Alternative languages
Result language
angličtina
Original language name
Look for the Change: Learning Object States and State-Modifying Actions from Untrimmed Web Videos
Original language description
Human actions often induce changes of object states such as “cutting an apple”, “cleaning shoes” or “pouring coffee”. In this paper, we seek to temporally localize ob ject states (e.g. “empty” and “full” cup) together with the corresponding state-modifying actions (“pouring coffee”) in long uncurated videos with minimal supervision. The contributions of this work are threefold. First, we develop a self-supervised model for jointly learning state-modifying actions together with the corresponding object states from an uncurated set of videos from the Internet. The model is self-supervised by the causal ordering signal, i.e. initial ob ject state -> manipulating action -> end state. Second, to cope with noisy uncurated training data, our model incor porates a noise adaptive weighting module supervised by a small number of annotated still images, that allows to ef ficiently filter out irrelevant videos during training. Third, we collect a new dataset with more than 2600 hours of video and 34 thousand changes of object states, and manually an notate a part of this data to validate our approach. Our re sults demonstrate substantial improvements over prior work in both action and object state-recognition in video.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-6654-6946-3
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
11
Pages from-to
13936-13946
Publisher name
IEEE
Place of publication
Piscataway
Event location
New Orleans, Louisiana
Event date
Jun 19, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000870759107004