Joint Discovery of Object States and Manipulation Actions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00318983" target="_blank" >RIV/68407700:21730/17:00318983 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ICCV.2017.234" target="_blank" >http://dx.doi.org/10.1109/ICCV.2017.234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2017.234" target="_blank" >10.1109/ICCV.2017.234</a>
Alternative languages
Result language
angličtina
Original language name
Joint Discovery of Object States and Manipulation Actions
Original language description
Many human activities involve object manipulations aiming to modify the object state. Examples of common state changes include full/empty bottle, open/closed door, and attached/detached car wheel. In this work, we seek to automatically discover the states of objects and the associated manipulation actions. Given a set of videos for a particular task, we propose a joint model that learns to identify object states and to localize state-modifying actions. Our model is formulated as a discriminative clustering cost with constraints. We assume a consistent temporal order for the changes in object states and manipulation actions, and introduce new optimization techniques to learn model parameters without additional supervision. We demonstrate successful discovery of seven manipulation actions and corresponding object states on a new dataset of videos depicting real-life object manipulations. We show that our joint formulation results in an improvement of object state discovery by action recognition and vice versa.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2017 IEEE International Conference on Computer Vision (ICCV 2017)
ISBN
978-1-5386-1032-9
ISSN
1550-5499
e-ISSN
—
Number of pages
10
Pages from-to
2146-2155
Publisher name
IEEE
Place of publication
Piscataway
Event location
Venice
Event date
Oct 22, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000425498402022