Self-Supervised Video Similarity Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370573" target="_blank" >RIV/68407700:21230/23:00370573 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/CVPRW59228.2023.00504" target="_blank" >https://doi.org/10.1109/CVPRW59228.2023.00504</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPRW59228.2023.00504" target="_blank" >10.1109/CVPRW59228.2023.00504</a>
Alternative languages
Result language
angličtina
Original language name
Self-Supervised Video Similarity Learning
Original language description
We introduce S2VS, a video similarity learning approach with self-supervision. Self-Supervised Learning (SSL) is typically used to train deep models on a proxy task so as to have strong transferability on target tasks after fine-tuning. Here, in contrast to prior work, SSL is used to perform video similarity learning and address multiple retrieval and detection tasks at once with no use of labeled data. This is achieved by learning via instance-discrimination with task-tailored augmentations and the widely used InfoNCE loss together with an additional loss operating jointly on self-similarity and hard-negative similarity. We benchmark our method on tasks where video relevance is defined with varying granularity, ranging from video copies to videos depicting the same incident or event. We learn a single universal model that achieves state-of-the-art performance on all tasks, surpassing previously proposed methods that use labeled data. The code and pretrained models are publicly available at: https://github.com/gkordo/s2vs
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GM21-28830M" target="_blank" >GM21-28830M: Learning Universal Visual Representation with Limited Supervision</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Whorkshops (CVPRW)
ISBN
979-8-3503-0249-3
ISSN
2160-7508
e-ISSN
2160-7516
Number of pages
11
Pages from-to
4756-4766
Publisher name
IEEE Computer Society
Place of publication
USA
Event location
Vancouver
Event date
Jun 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—