All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475701" target="_blank" >RIV/00216208:11320/23:10475701 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.21437/SSW.2023-8" target="_blank" >http://dx.doi.org/10.21437/SSW.2023-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21437/SSW.2023-8" target="_blank" >10.21437/SSW.2023-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module

  • Original language description

    We present MooseNet, a trainable speech metric that predicts the listeners&apos; Mean Opinion Score (MOS). We propose a novel approach where the Probabilistic Linear Discriminative Analysis (PLDA) generative model is used on top of an embedding obtained from a self-supervised learning (SSL) neural network (NN) model. We show that PLDA works well with a non-finetuned SSL model when trained only on 136 utterances (ca. one minute training time) and that PLDA consistently improves various neural MOS prediction models, even stateof-the-art models with task-specific fine-tuning. Our ablation study shows PLDA training superiority over SSL model finetuning in a low-resource scenario. We also improve SSL model fine-tuning using a convenient optimizer choice and additional contrastive and multi-task training objectives. The fine-tuned MooseNet NN with the PLDA module achieves the best results, surpassing the SSL baseline on the VoiceMOS Challenge data.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů