All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spatio-Semantic ConvNet-Based Visual Place Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337205" target="_blank" >RIV/68407700:21730/19:00337205 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ECMR.2019.8870948" target="_blank" >https://doi.org/10.1109/ECMR.2019.8870948</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ECMR.2019.8870948" target="_blank" >10.1109/ECMR.2019.8870948</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spatio-Semantic ConvNet-Based Visual Place Recognition

  • Original language description

    We present a Visual Place Recognition system that follows the two-stage format common to image retrieval pipelines. The system encodes images of places by employing the activations of different layers of a pre-trained, off-the-shelf, VGG16 Convolutional Neural Network (CNN) architecture. In the first stage of our method and given a query image of a place, a number of top candidate images is retrieved from a previously stored database of places. In the second stage, we propose an exhaustive comparison of the query image against these candidates by encoding semantic and spatial information in the form of CNN features. Results from our approach outperform by a large margin state-of-the-art visual place recognition methods on five of the most commonly used benchmark datasets. The performance gain is especially remarkable on the most challenging datasets, with more than a twofold recognition improvement with respect to the latest published work.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotics 4 Industry 4.0</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2019 European Conference on Mobile Robots

  • ISBN

    978-1-7281-3605-9

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    American Institute of Physics and Magnetic Society of the IEEE

  • Place of publication

    San Francisco

  • Event location

    Prague

  • Event date

    Aug 4, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000558081900044