All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

End-to-End Learning of Visual Representations from Uncurated Instructional Videos

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00343640" target="_blank" >RIV/68407700:21730/20:00343640 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR42600.2020.00990" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.00990</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR42600.2020.00990" target="_blank" >10.1109/CVPR42600.2020.00990</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    End-to-End Learning of Visual Representations from Uncurated Instructional Videos

  • Original language description

    Annotating videos is cumbersome, expensive and not scalable. Yet, many strong video models still rely on manually annotated data. With the recent introduction of the HowTo100M dataset, narrated videos now offer the possibility of learning video representations without manual supervision. In this work we propose a new learning approach, MIL-NCE, capable of addressing mis- alignments inherent in narrated videos. With this approach we are able to learn strong video representations from scratch, without the need for any manual annotation. We evaluate our representations on a wide range of four downstream tasks over eight datasets: action recognition (HMDB-51, UCF-101, Kinetics-700), text-to- video retrieval (YouCook2, MSR-VTT), action localization (YouTube-8M Segments, CrossTask) and action segmentation (COIN). Our method outperforms all published self-supervised approaches for these tasks as well as several fully supervised baselines.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-7169-2

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    11

  • Pages from-to

    9876-9886

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Seattle

  • Event date

    Jun 13, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article