Tactic Learning and Proving for the Coq Proof Assistant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00344764" target="_blank" >RIV/68407700:21730/20:00344764 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.29007/wg1q" target="_blank" >https://doi.org/10.29007/wg1q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.29007/wg1q" target="_blank" >10.29007/wg1q</a>
Alternative languages
Result language
angličtina
Original language name
Tactic Learning and Proving for the Coq Proof Assistant
Original language description
We present a system that utilizes machine learning for tactic proof search in the Coq Proof Assistant. In a similar vein as the TacticToe project for HOL4, our system predicts appropriate tactics and finds proofs in the form of tactic scripts. To do this, it learns from previous tactic scripts and how they are applied to proof states. The performance of the system is evaluated on the Coq Standard Library. Currently, our predictor can identify the correct tactic to be applied to a proof state 23.4% of the time. Our proof searcher can fully automatically prove 39.3% of the lemmas. When combined with the CoqHammer system, the two systems together prove 56.7% of the library’s lemmas.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EPiC Series in Computing
ISBN
—
ISSN
2398-7340
e-ISSN
2398-7340
Number of pages
13
Pages from-to
138-150
Publisher name
EasyChair Publications
Place of publication
Manchester
Event location
Alicante
Event date
May 22, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—