All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MyGym: Modular Toolkit for Visuomotor Robotic Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354192" target="_blank" >RIV/68407700:21730/21:00354192 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICTAI52525.2021.00046" target="_blank" >https://doi.org/10.1109/ICTAI52525.2021.00046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICTAI52525.2021.00046" target="_blank" >10.1109/ICTAI52525.2021.00046</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MyGym: Modular Toolkit for Visuomotor Robotic Tasks

  • Original language description

    We introduce myGym, a toolkit suitable for fast prototyping of neural networks in the area of robotic manipulation and navigation. Our toolbox is fully modular, enabling users to train their algorithms on different robots, environments, and tasks. We also include pretrained neural network modules for the real-time vision that allows training visuomotor tasks with sim2real transfer. The visual modules can be easily retrained using the dataset generation pipeline with domain augmentation and randomization. Moreover, myGym provides automatic evaluation methods and baselines that help the user to directly compare their trained model with the state-of-the-art algorithms. We additionally present a novel metric, called learnability, to compare the general learning capability of algorithms in different settings, where the complexity of the environment, robot, and the task is systematically manipulated. The learnability score tracks differences between the performance of algorithms in increasingly challenging setup conditions, and thus allows the user to compare different models in a more systematic fashion. The code is accessible at https://github.com/incognite-lab/myGym

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Engineering applications of microworld physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)

  • ISBN

    978-1-6654-0898-1

  • ISSN

    1082-3409

  • e-ISSN

    2375-0197

  • Number of pages

    5

  • Pages from-to

    279-283

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Washington

  • Event date

    Nov 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000747482300038