The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356339" target="_blank" >RIV/68407700:21730/21:00356339 - isvavai.cz</a>
Result on the web
<a href="https://github.com/incognite-lab/myGym" target="_blank" >https://github.com/incognite-lab/myGym</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
myGym
Original language description
Toolkit suitable for fast prototyping of neural networks in the area of robotic manipulation and navigation. Our toolbox is fully modular, so that you can train your network with different robots, in several environments and on various tasks. You can also create a curriculum of tasks with increasing complexity and test your network on them. We also included an automatic evaluation and benchmark tool for your developed model. We have pretained the Yolact network for visual recognition of all objects in the simulator, so that you can reward your networks based on visual sensors only. We keep training the current state-of-the-art algorithms to provide baselines for the tasks in the toolbox. There is also a leaderboard showing algorithms with the best generalization capability, tested on the tasks in our basic curriculum.
Czech name
—
Czech description
—
Classification
Type
R - Software
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Engineering applications of microworld physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Internal product ID
mygym 2.0
Technical parameters
System requirements Ubuntu 18.04, 20.04 Python 3 GPU acceleration strongly recommended
Economical parameters
Vytvořeno v rámci projektu INAFYM
Owner IČO
68407700
Owner name
České vysoké učení technické v Praze / Český institut informatiky, robotiky a kybernetiky