Estimating 3D Motion and Forces of Human–Object Interactions from Internet Videos
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00356153" target="_blank" >RIV/68407700:21730/22:00356153 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11263-021-01540-1" target="_blank" >https://doi.org/10.1007/s11263-021-01540-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-021-01540-1" target="_blank" >10.1007/s11263-021-01540-1</a>
Alternative languages
Result language
angličtina
Original language name
Estimating 3D Motion and Forces of Human–Object Interactions from Internet Videos
Original language description
In this paper, we introduce a method to automatically reconstruct the 3D motion of a person interacting with an object from a single RGB video. Our method estimates the 3D poses of the person together with the object pose, the contact positions and the contact forces exerted on the human body. The main contributions of this work are three-fold. First, we introduce an approach to jointly estimate the motion and the actuation forces of the person on the manipulated object by modeling contacts and the dynamics of the interactions. This is cast as a large-scale trajectory optimization problem. Second, we develop a method to automatically recognize from the input video the 2D position and timing of contacts between the person and the object or the ground, thereby significantly simplifying the complexity of the optimization. Third, we validate our approach on a recent video + MoCap dataset capturing typical parkour actions, and demonstrate its performance on a new dataset of Internet videos showing people manipulating a variety of tools in unconstrained environments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
1573-1405
Volume of the periodical
130
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
363-383
UT code for WoS article
000738560100004
EID of the result in the Scopus database
2-s2.0-85122284235