All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Focal Length and Object Pose Estimation via Render and Compare

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00365335" target="_blank" >RIV/68407700:21730/22:00365335 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52688.2022.00380" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.00380</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52688.2022.00380" target="_blank" >10.1109/CVPR52688.2022.00380</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Focal Length and Object Pose Estimation via Render and Compare

  • Original language description

    We introduce FocalPose, a neural render-and-compare method for jointly estimating the camera-object 6D pose and camera focal length given a single RGB input image depicting a known object. The contributions of this work are twofold. First, we derive a focal length update rule that extends an existing state-of-the-art render-and-compare 6D pose estimator to address the joint estimation task. Second, we investigate several different loss functions for jointly estimating the object pose and focal length. We find that a combination of direct focal length regression with a reprojection loss disentangling the contribution of translation, rotation, and focal length leads to improved results. We show results on three challenging benchmark datasets that depict known 3D models in uncontrolled settings. We demonstrate that our focal length and 6D pose estimates have lower error than the existing state-of-the-art methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-6946-3

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    3815-3824

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    New Orleans, Louisiana

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000867754204008