All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CosyPose: Consistent Multi-view Multi-object 6D Pose Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347779" target="_blank" >RIV/68407700:21730/20:00347779 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-58520-4_34" target="_blank" >https://doi.org/10.1007/978-3-030-58520-4_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58520-4_34" target="_blank" >10.1007/978-3-030-58520-4_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CosyPose: Consistent Multi-view Multi-object 6D Pose Estimation

  • Original language description

    We introduce an approach for recovering the 6D pose of multiple known objects in a scene captured by a set of input images with unknown camera viewpoints. First, we present a single-view single-object 6D pose estimation method, which we use to generate 6D object pose hypotheses. Second, we develop a robust method for matching individual 6D object pose hypotheses across different input images in order to jointly estimate camera viewpoints and 6D poses of all objects in a single consistent scene. Our approach explicitly handles object symmetries, does not require depth measurements, is robust to missing or incorrect object hypotheses, and automatically recovers the number of objects in the scene. Third, we develop a method for global scene refinement given multiple object hypotheses and their correspondences across views. This is achieved by solving an object-level bundle adjustment problem that refines the poses of cameras and objects to minimize the reprojection error in all views. We demonstrate that the proposed method, dubbed CosyPose, outperforms current state-of-the-art results for single-view and multi-view 6D object pose estimation by a large margin on two challenging benchmarks: the YCB-Video and T-LESS datasets. Code and pre-trained models are available on the project webpage.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII

  • ISBN

    978-3-030-58519-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    574-591

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Glasgow

  • Event date

    Aug 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article