All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TubeDETR: Spatio-Temporal Video Grounding with Transformers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00365338" target="_blank" >RIV/68407700:21730/22:00365338 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52688.2022.01595" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.01595</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52688.2022.01595" target="_blank" >10.1109/CVPR52688.2022.01595</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    TubeDETR: Spatio-Temporal Video Grounding with Transformers

  • Original language description

    We consider the problem of localizing a spatio-temporal tube in a video corresponding to a given text query. This is a challenging task that requires the joint and efficient modeling of temporal, spatial and multi-modal interactions. To address this task, we propose TubeDETR, a transformer-based architecture inspired by the recent success of such models for text-conditioned object detection. Our model notably includes: (i) an efficient video and text encoder that models spatial multi-modal interactions over sparsely sampled frames and (ii) a space-time decoder that jointly performs spatio-temporal localization. We demonstrate the advantage of our proposed components through an extensive ablation study. We also evaluate our full approach on the spatio-temporal video grounding task and demonstrate improvements over the state of the art on the challenging VidSTG and HC-STVG benchmarks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-6946-3

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    12

  • Pages from-to

    16421-16432

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    New Orleans, Louisiana

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000870783002023