Automated Theorem Proving for Metamath
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372172" target="_blank" >RIV/68407700:21730/23:00372172 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.ITP.2023.9" target="_blank" >https://doi.org/10.4230/LIPIcs.ITP.2023.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITP.2023.9" target="_blank" >10.4230/LIPIcs.ITP.2023.9</a>
Alternative languages
Result language
angličtina
Original language name
Automated Theorem Proving for Metamath
Original language description
Metamath is a proof assistant that keeps surprising outsiders by its combination of a very minimalist design with a large library of advanced results, ranking high on the Freek Wiedijk’s 100 list. In this work, we develop several translations of the Metamath logic and its large set-theoretical library into higher-order and first-order TPTP formats for automated theorem provers (ATPs). We show that state-of-the-art ATPs can prove 68% of the Metamath problems automatically when using the premises that were used in the human-written Metamath proofs. Finally, we add proof reconstruction and premise selection methods and combine the components into the first hammer system for Metamath.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
14th International Conference on Interactive Theorem Proving (ITP 2023)
ISBN
978-3-95977-284-6
ISSN
1868-8969
e-ISSN
—
Number of pages
19
Pages from-to
—
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Białystok
Event date
Jul 31, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—