All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00329539" target="_blank" >RIV/68407700:21230/18:00329539 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/18:00329539

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-94205-6_37" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-94205-6_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-94205-6_37" target="_blank" >10.1007/978-3-319-94205-6_37</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback

  • Original language description

    ATPboost is a system for solving sets of large-theory problems by interleaving ATP runs with state-of-the-art machine learning of premise selection from the proofs. Unlike many approaches that use multi-label setting, the learning is implemented as binary classification that estimates the pairwise-relevance of (theorem, premise) pairs. ATPboost uses for this the fast state-of-the-art XGBoost gradient boosting algorithm. Learning in the binary setting however requires negative examples, which is nontrivial due to many alternative proofs. We discuss and implement several solutions in the context of the ATP/ML feedback loop, and show significant improvement over the multi-label approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Reasoning

  • ISBN

    978-3-319-94204-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    566-574

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Oxford

  • Event date

    Jul 14, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000470004600037