All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Formal Proof of R(4,5)=25

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00380284" target="_blank" >RIV/68407700:21730/24:00380284 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ITP.2024.16" target="_blank" >https://doi.org/10.4230/LIPIcs.ITP.2024.16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ITP.2024.16" target="_blank" >10.4230/LIPIcs.ITP.2024.16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Formal Proof of R(4,5)=25

  • Original language description

    In 1995, McKay and Radziszowski proved that the Ramsey number R(4,5) is equal to 25. Their proof relies on a combination of high-level arguments and computational steps. The authors have performed the computational parts of the proof with different implementations in order to reduce the possibility of an error in their programs. In this work, we prove this theorem in the interactive theorem prover HOL4 limiting the uncertainty to the small HOL4 kernel. Instead of verifying their algorithms directly, we rely on the HOL4 interface to MiniSat to prove gluing lemmas. To reduce the number of such lemmas and thus make the computational part of the proof feasible, we implement a generalization algorithm. We verify that its output covers all the possible cases by implementing a custom SAT-solver extended with a graph isomorphism checker.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1902" target="_blank" >LL1902: Powering SMT Solvers by Machine Learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th International Conference on Interactive Theorem Proving (ITP 2024), Proceeding

  • ISBN

    978-3-95977-337-9

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl International Conference and Research Center for Computer Sci.

  • Place of publication

    Dagstuhl

  • Event location

    Tbilisi

  • Event date

    Sep 9, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article