All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two Adaptive Approaches of Nonlinear System Control

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F08%3A63507416" target="_blank" >RIV/70883521:28110/08:63507416 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two Adaptive Approaches of Nonlinear System Control

  • Original language description

    Generally the artificial neural networks (ANN) are regarded as highly computational demanding method. The usage of ANN in model predictive control as an adaptive predictor is mostly impossible. The aim of this paper is to present and compare one possibleway how to reduce computational costs of adaptive predictors based on artificial neural networks. This paper presents real-time system control by two adaptive kontrol methods. The first method is based on the model predictive method with adaptive artificial neural network as a predictor. This artificial neural network offers interesting solution of the computation time problem while using artificial neural network as an adaptive (online) predictor. The second method is established on self-tuning approach. Both these methods are applied to a problem of control liquid level in interconnected tanks. Real-time experiments are performed using Amira DTS200 ? Three Tank System. This system is characterized by non-linear behavior

  • Czech name

    Dva adaptivní přístupy řízení nelineárních systémů

  • Czech description

    V článku jsou srovnávány dva přístupy k řízení nelineárních systémů. První metoda využívá prediktivního modelu vytvořeného pomocí umělé neuronové sítě. Zatímco druhá metoda je založena na použití STC regulátorů. Obě metody jsou aplikovány na řízení reálného systému DTS 200.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 3rd International Symposium on Communications, control and Signal Processing

  • ISBN

    978-1-4244-1688-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    Institute for Electrical and Electronic Engineers, Inc.

  • Place of publication

    New York

  • Event location

    Malta, St. Julians

  • Event date

    Mar 12, 2008

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article