Artificial Neural Network with Radial Basis Function in Model Predictive Control of Chemical Reactor
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F09%3A63509302" target="_blank" >RIV/70883521:28110/09:63509302 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Artificial Neural Network with Radial Basis Function in Model Predictive Control of Chemical Reactor
Original language description
This paper describes the application of artificial neural network with radial basis function as a predictor in model predictive control. Radial basis function neural networks are known for their fast training. Thus, this type of artificial neural networks offers promising way how to reduce computational cost during offline predictor training and eventual online adaptation. The features of this type of artificial neural network are presented in simulations in MATLAB/Simulink on the nonlinear system control. The aim of this paper is to suggest one approach how to solve nonlinear prediction problem using artificial neural network respecting computational demands of the predictor..
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JP - Industrial processes and processing
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Mechanincs
ISSN
1734-8927
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
6
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—