Artificial neural networks with radial basis function in prediction benchmark
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F10%3A63509301" target="_blank" >RIV/70883521:28110/10:63509301 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Artificial neural networks with radial basis function in prediction benchmark
Original language description
The paper continues the research presented in the last DAAAM symposium (Samek, 2009), where the four types of artificial neural networks were tested in CATS prediction benchmark and the results were compared and discussed. This contribution is focused onartificial neural networks with radial basis function in the hidden layer. The special attention is paid not only to the prediction accuracy, but also to the computational demands of predictor.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JP - Industrial processes and processing
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 21st International DAAAM Symposium "Intelligent Manufacturing & Automation: Focus on Interdisciplinary Solutions"
ISBN
978-3-901509-73-5
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
—
Publisher name
DAAAM International Vienna
Place of publication
Vienna
Event location
Zadar, Croatia
Event date
Jan 1, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—