All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63521492" target="_blank" >RIV/70883521:28110/18:63521492 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28610/18:63521492

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/pc.24828" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/pc.24828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/pc.24828" target="_blank" >10.1002/pc.24828</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin

  • Original language description

    The present work investigates the properties and morphology of nanobent/poly(methyl methacrylate) (PMMA)/epoxy resin hybrid nanocomposites which were successfully prepared by solvent and ultrasonication methods. Nanobent ZS1 were added in amount of 1, 2, 3, and 4 wt% and 5, 10, and 15 wt% for PMMA. The fracture toughness (impact strength and critical stress intensity factor) and flexural properties were evaluated for epoxy composites. Obtained results showed improvement of the epoxy resin mechanical properties due to the addition of PMMA and nanobent. Composites containing 5 wt% of polymeric modifier or 1 wt% nanobent exhibited maximally improved properties. In the case of hybrid composites, synergistic effect was obtained with flexural strain at break and flexural energy to break of hybrid nanocomposite based on 1 wt% nanobent and 5 wt% PMMA. However, epoxy nanocomposites based on 2 wt% nanobent and 5 wt% PMMA showed synergism with IS and brittle fracture energy toward the composites with one modifier. Fourier transform infrared (FTIR) spectra analysis confirmed interactions between incorporated modifiers and reactive groups of the epoxy matrix. Moreover, scanning electron microscope (SEM) micrographs of hybrid epoxy nanocomposites exhibited a morphology with large plastic yielding associated with significant roughness of the fracture surface with embedment of nanobent in the polymer system. This study clearly demonstrates that the improvement of mechanical properties of the epoxy resin could be attributed to the synergistic toughening effect of PMMA and nanobent without deterioration of thermal stability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymer Composites

  • ISSN

    0272-8397

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    "E2540"-"E2551"

  • UT code for WoS article

    000455895400057

  • EID of the result in the Scopus database

    2-s2.0-85043598147