All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antibacterial activity and cytotoxicity of immobilized glucosamine/chondroitin sulfate on polylactic acid films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F19%3A63523589" target="_blank" >RIV/70883521:28110/19:63523589 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28610/19:63523589

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/11/7/1186" target="_blank" >https://www.mdpi.com/2073-4360/11/7/1186</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym11071186" target="_blank" >10.3390/polym11071186</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antibacterial activity and cytotoxicity of immobilized glucosamine/chondroitin sulfate on polylactic acid films

  • Original language description

    Polylactic acid (PLA) is one of the most produced polymeric materials, due to its exceptional chemical and mechanical properties. Some of them, such as biodegradability and biocompatibility, make them attractive for biomedical applications. Conversely, the major drawback of PLA in the biomedical field is their vulnerability to bacterial contamination. This study focuses on the immobilization of saccharides onto the PLA surface by a multistep approach, with the aim of providing antibacterial features and evaluting the synergistic effect of these saccharides. In this approach, after poly (acrylic acid) (PAA) brushes attached non-covalently to the PLA surface via plasma post-irradiation grafting technique, immobilization of glucosamine (GlcN) and chondroitin sulfate (ChS) to the PAA brushes was carried out. To understand the changes in surface properties, such as chemical composition, surface topography and hydrophilicity, the untreated and treated PLA films were analyzed using various characterization techniques (contact angle, scanning electron microscopy, X-ray photoelectron spectroscopy). In vitro cytotoxicity assays were investigated by the methyl tetrazolium test. The antibacterial activity of the PLA samples was tested against Escherichia coli and Staphylococcus aureus bacteria strains. Plasma-treated films immobilized with ChS and GlcN, separately and in combination, demonstrated bactericidal effect against the both bacteria strains and also the results revealed that the combination has no synergistic effect on antibacterial action.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/GA17-05095S" target="_blank" >GA17-05095S: Biomimetic materials based on conducting polymers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000480539500103

  • EID of the result in the Scopus database

    2-s2.0-85070363085