All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Titanium dioxide and halloysite loaded polylactic acid-based membrane continuous flow photoreactor for 17α-ethinylestradiol (EE2) hormone degradation: Optimization, kinetics, mechanism, and reusability study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63578978" target="_blank" >RIV/70883521:28110/24:63578978 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28610/24:63578978

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0920586124000968?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920586124000968?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cattod.2024.114602" target="_blank" >10.1016/j.cattod.2024.114602</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Titanium dioxide and halloysite loaded polylactic acid-based membrane continuous flow photoreactor for 17α-ethinylestradiol (EE2) hormone degradation: Optimization, kinetics, mechanism, and reusability study

  • Original language description

    Exposure to endocrine-disrupting chemicals (EDCs) has been linked to harmful effects in biota due to their widespread chemical persistence. In this paper, we report on the fabrication of electrospun polylactic acid (PLA) based nanofibers functionalized with TiO2 nanoparticles. The PLA-based TiO2 nanofibers were further stabilized with the incorporation of halloysite (HNT) particles. The nanofibers were fabricated in varied concentrations of HNT (5, 10, 15%), while TiO2 was kept at 10% for all the prepared samples. The fabricated samples were evaluated for elimination of synthetic 17α-ethinylestradiol (EE2) hormone as a model EDC pollutant. By using combined adsorptive and photocatalytic processes, the as-prepared samples were evaluated in a continuous flow system under dark and UV-light irradiation for EE2 removal. The best-performing sample with an optimized concentration of PLA/TiO2/HNT (85, 10, 5%) was able to eliminate 71.6% of EE2 hormone under UV irradiation at a hormone concentration of 0.1 mg/L. The maximum removal capacity obtained was 1.26 mg/g in 2 h, which best fitted the pseudo-first-order kinetics model. The sample was further utilized for additional experiments by changing experimental parameters, such as contact time, solution pH, and flow rate. To elucidate the actual degradation of the EE2 hormone, LCMS analysis was carried out to monitor the formation of by-products, which indicated that EE2 was fragmented into different potentially benign molecules. Finally, the best-performing sample was utilized for ten cyclic runs under optimized conditions for which the sample maintained sufficiently high degradation without any loss in structural integrity. Overall, the results showed that the developed PLA/TiO2/HNT nanofibers have a high potential to target persistent organic pollutants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catalysis Today

  • ISSN

    0920-5861

  • e-ISSN

  • Volume of the periodical

    432

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    001197396500001

  • EID of the result in the Scopus database

    2-s2.0-85185551321