Titanium dioxide and halloysite loaded polylactic acid-based membrane continuous flow photoreactor for 17α-ethinylestradiol (EE2) hormone degradation: Optimization, kinetics, mechanism, and reusability study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63578978" target="_blank" >RIV/70883521:28110/24:63578978 - isvavai.cz</a>
Alternative codes found
RIV/70883521:28610/24:63578978
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0920586124000968?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920586124000968?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2024.114602" target="_blank" >10.1016/j.cattod.2024.114602</a>
Alternative languages
Result language
angličtina
Original language name
Titanium dioxide and halloysite loaded polylactic acid-based membrane continuous flow photoreactor for 17α-ethinylestradiol (EE2) hormone degradation: Optimization, kinetics, mechanism, and reusability study
Original language description
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to harmful effects in biota due to their widespread chemical persistence. In this paper, we report on the fabrication of electrospun polylactic acid (PLA) based nanofibers functionalized with TiO2 nanoparticles. The PLA-based TiO2 nanofibers were further stabilized with the incorporation of halloysite (HNT) particles. The nanofibers were fabricated in varied concentrations of HNT (5, 10, 15%), while TiO2 was kept at 10% for all the prepared samples. The fabricated samples were evaluated for elimination of synthetic 17α-ethinylestradiol (EE2) hormone as a model EDC pollutant. By using combined adsorptive and photocatalytic processes, the as-prepared samples were evaluated in a continuous flow system under dark and UV-light irradiation for EE2 removal. The best-performing sample with an optimized concentration of PLA/TiO2/HNT (85, 10, 5%) was able to eliminate 71.6% of EE2 hormone under UV irradiation at a hormone concentration of 0.1 mg/L. The maximum removal capacity obtained was 1.26 mg/g in 2 h, which best fitted the pseudo-first-order kinetics model. The sample was further utilized for additional experiments by changing experimental parameters, such as contact time, solution pH, and flow rate. To elucidate the actual degradation of the EE2 hormone, LCMS analysis was carried out to monitor the formation of by-products, which indicated that EE2 was fragmented into different potentially benign molecules. Finally, the best-performing sample was utilized for ten cyclic runs under optimized conditions for which the sample maintained sufficiently high degradation without any loss in structural integrity. Overall, the results showed that the developed PLA/TiO2/HNT nanofibers have a high potential to target persistent organic pollutants.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Catalysis Today
ISSN
0920-5861
e-ISSN
—
Volume of the periodical
432
Issue of the periodical within the volume
Neuveden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
—
UT code for WoS article
001197396500001
EID of the result in the Scopus database
2-s2.0-85185551321