On the software projects' duration estimation using support vector regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F23%3A63564638" target="_blank" >RIV/70883521:28120/23:63564638 - isvavai.cz</a>
Alternative codes found
RIV/70883521:28140/23:63564638 RIV/70883521:28150/23:63564638
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21435-6_25" target="_blank" >10.1007/978-3-031-21435-6_25</a>
Alternative languages
Result language
angličtina
Original language name
On the software projects' duration estimation using support vector regression
Original language description
Estimating the project’s duration is one of the critical steps in helping to ensure project success. It helps to allocate resources and personnel appropriately during project development. This study aims to look for a more suitable algorithm between two selected algorithms for estimating project duration. Two machine learning algorithms, Multiple Linear Regression and Support Vector Regression, were used to estimate the project’s duration. The data used here is an ISBSG dataset with intelligent preprocessing to give an ideal fit to the algorithm used. The dependent variables used in the test are project size, maximum team size, and resource level. With the two algorithms selected, the estimated value of the project's duration is relatively close to the actual duration of the project. Through the six evaluation criteria, R-square, MAE, MAPE, RMSE, MBRE, MIBRE and the pair-wise t-test statistical method, the Support Vector Regression algorithm gives a much better estimate of the project's duration than the Multiple Linear Regression algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and Systems
ISBN
978-3-031-21434-9
ISSN
23673370
e-ISSN
2367-3389
Number of pages
11
Pages from-to
288-298
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlín
Event location
on-line
Event date
Oct 10, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—