All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the software projects' duration estimation using support vector regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F23%3A63564638" target="_blank" >RIV/70883521:28120/23:63564638 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28140/23:63564638 RIV/70883521:28150/23:63564638

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-21435-6_25" target="_blank" >10.1007/978-3-031-21435-6_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the software projects' duration estimation using support vector regression

  • Original language description

    Estimating the project’s duration is one of the critical steps in helping to ensure project success. It helps to allocate resources and personnel appropriately during project development. This study aims to look for a more suitable algorithm between two selected algorithms for estimating project duration. Two machine learning algorithms, Multiple Linear Regression and Support Vector Regression, were used to estimate the project’s duration. The data used here is an ISBSG dataset with intelligent preprocessing to give an ideal fit to the algorithm used. The dependent variables used in the test are project size, maximum team size, and resource level. With the two algorithms selected, the estimated value of the project&apos;s duration is relatively close to the actual duration of the project. Through the six evaluation criteria, R-square, MAE, MAPE, RMSE, MBRE, MIBRE and the pair-wise t-test statistical method, the Support Vector Regression algorithm gives a much better estimate of the project&apos;s duration than the Multiple Linear Regression algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems

  • ISBN

    978-3-031-21434-9

  • ISSN

    23673370

  • e-ISSN

    2367-3389

  • Number of pages

    11

  • Pages from-to

    288-298

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    on-line

  • Event date

    Oct 10, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article