All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algorithmic Optimisation Method for Improving Use Case Points Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F15%3A43873810" target="_blank" >RIV/70883521:28140/15:43873810 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1371/journal.pone.0141887" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0141887</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0141887" target="_blank" >10.1371/journal.pone.0141887</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algorithmic Optimisation Method for Improving Use Case Points Estimation

  • Original language description

    This paper presents a new size estimation method that can be used to estimate size level for software engineering projects. The Algorithmic Optimisation Method is based on Use Case Points and on Multiple Least Square Regression. The method is derived into three phases. The first phase deals with calculation Use Case Points and correction coefficients values. Correction coefficients are obtained by using Multiple Least Square Regression. New project is estimated in the second and third phase. In the second phase Use Case Points parameters for new estimation are set up and in the third phase project estimation is performed. Final estimation is obtained by using newly developed estimation equation, which used two correction coefficients. The Algorithmic Optimisation Method performs approximately 43% better than the Use Case Points method, based on their magnitude of relative error score. All results were evaluated by standard approach: visual inspection, goodness of fit measure and statis

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000364422800011

  • EID of the result in the Scopus database