All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AdamOptimizer for the optimisation of Use Case Points estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526963" target="_blank" >RIV/70883521:28140/20:63526963 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-63322-6_63" target="_blank" >http://dx.doi.org/10.1007/978-3-030-63322-6_63</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63322-6_63" target="_blank" >10.1007/978-3-030-63322-6_63</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    AdamOptimizer for the optimisation of Use Case Points estimation

  • Original language description

    Use Case Points is considered to be one of the most popular methods to estimate the size of a developed software project. Many approaches have been proposed to optimise Use Case Points. The Algorithmic Optimisation Method uses the Multiple Least Squares method to improve the accuracy of Use Case Points by finding optimal coefficient regressions, based on the historical data. This paper aims to propose a new approach to optimise the Use Case Points method based on Gradient Descent with the support of the TensorFlow package. The significance of its purpose is to conduct a new approach that might lead to more accurate prediction than that of the Use Case Points and the Algorithmic Optimisation Method. As a result, this new approach outweighs both the Use Case Points and the Algorithmic Optimisation Methods. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing Volume 1294

  • ISBN

    978-303063321-9

  • ISSN

    21945357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    747-756

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    Vsetín

  • Event date

    Oct 14, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article