Forward backward transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F09%3A00001060" target="_blank" >RIV/70883521:28140/09:00001060 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-540-92151-6_3" target="_blank" >http://dx.doi.org/10.1007/978-3-540-92151-6_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-540-92151-6_3" target="_blank" >10.1007/978-3-540-92151-6_3</a>
Alternative languages
Result language
angličtina
Original language name
Forward backward transformation
Original language description
Forward Backward Transformation and its realization, Enhanced Differential Evolution algorithm is one of the permutative versions of Differential Evolution, which has been developed to solve permutative combinatorial optimization problems. Novel domain conversions routines, alongside special enhancement routines and local search heuristic have been incorporated into the canonical Differential Evolution in order to make it more robust and effective. Three unique and challenging problems of Flow Shop Scheduling, Quadratic Assignment and Traveling Salesman have been solved, utilizing this new approach. The promising results obtained have been compared and analysed against other benchmark heuristics and published work.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studies in Computational Intelligence
ISSN
1860-949X
e-ISSN
—
Volume of the periodical
175
Issue of the periodical within the volume
Neuveden
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
35-80
UT code for WoS article
—
EID of the result in the Scopus database
—