Optimization of the local model network structure for predictive control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F11%3A43865504" target="_blank" >RIV/70883521:28140/11:43865504 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimization of the local model network structure for predictive control
Original language description
In this work the structure of the network consisting of local models is optimized via iterative algorithm. The initial position of the local models in the operating space is obtained using the clustering algorithm. Clustering of dynamic data is used to unable multiple local data regions to be identified as a function of similarity between the dynamic data within the local data regions. The number of clusters is further reduced by merging clusters together based the modelling performance and similarity criterion. The reduced model is then used in the GPC framework as a linear approximation of the process in the current operating point. Simple structure of the local model network enables its linearization along the future trajectory. The approach is illustrated by a simulation study of a continuous stirred tank reactor.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP102%2F09%2FP243" target="_blank" >GP102/09/P243: Nonlinear System Predictive Control using Local Model Networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Modelling, Indentification and Control
ISSN
1025-8973
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
7
Pages from-to
371-377
UT code for WoS article
—
EID of the result in the Scopus database
—