All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Time series prediction using artificial neural networks: Single and multi-dimensional data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F13%3A43869746" target="_blank" >RIV/70883521:28140/13:43869746 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28110/13:43869746

  • Result on the web

    <a href="http://www.naun.org/multimedia/NAUN/ijmmas/16-561.pdf" target="_blank" >http://www.naun.org/multimedia/NAUN/ijmmas/16-561.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Time series prediction using artificial neural networks: Single and multi-dimensional data

  • Original language description

    The paper studies time series prediction using artificial neural networks. The special attention is paid to the influence of size of the input vector length. Furthermore, the prediction of standard single-dimensional data signal and the prediction of multi-dimensional data signal are compared. The tested artificial networks are as follows: multilayer feed-forward neural network, recurrent Elman neural network, adaptive linear network and radial basis function neural network.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Mathematical Models and Methods in Applied Science

  • ISSN

    1998-0140

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    38-46

  • UT code for WoS article

  • EID of the result in the Scopus database