ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63520856" target="_blank" >RIV/70883521:28140/19:63520856 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-11723-8_32" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-11723-8_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-11723-8_32" target="_blank" >10.1007/978-3-030-11723-8_32</a>
Alternative languages
Result language
angličtina
Original language name
ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation
Original language description
In this paper, we propose the algorithm for stroke lesion segmentation based on a deep convolutional neural network (CNN). The model is based on U-shaped CNN, which has been applied successfully to other medical image segmentation tasks. The network architecture was derived from the model presented in Isensee et al. [1] and is capable of processing whole 3D images. The model incorporates the convolution layers through upsampled filters – also known as dilated convolution. This change enlarges filter’s field of the view and allows the net to integrate larger context into the computation. We add the dilated convolution into different parts of network architecture and study the impact on the overall model performance. The best model which uses the dilated convolution in the input of the net outperforms the original architecture in nearly all used evaluation metrics. The code and trained models can be found on the GitHub website: http://github.com/tureckova/ISLES2018/.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-11722-1
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
319-327
Publisher name
Springer International Publishing AG
Place of publication
Basel
Event location
Granada
Event date
Sep 16, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—