All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Segmentation of Actin-Stained 3D Fluorescent Cells with Filopodial Protrusions using Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100837" target="_blank" >RIV/00216224:14330/18:00100837 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISBI.2018.8363605" target="_blank" >http://dx.doi.org/10.1109/ISBI.2018.8363605</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISBI.2018.8363605" target="_blank" >10.1109/ISBI.2018.8363605</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Segmentation of Actin-Stained 3D Fluorescent Cells with Filopodial Protrusions using Convolutional Neural Networks

  • Original language description

    We present the architecture, training strategy and evaluation of a convolutional neural network (CNN) designed for the segmentation of actin-stained cells in 3D+t confocal microscopy image data. The segmentation performance of the CNN is evaluated using time-lapse sequences of lung adenocarcinoma cells with three genetically distinct variants of the tubulin adaptor protein, a key protein in the process of assembly of the cell cytoskeleton, displaying three different phenotypes in regards to the morphology of the cells and in particular, to the number and length of filopodial structures. We show that the CNN significantly outperforms a baseline method based on the minimization of the Chan-Vese model using graph cuts, and we discuss the inherent benefits of using the CNN over the baseline method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ16-03909Y" target="_blank" >GJ16-03909Y: Development of Reliable Methods for Automated Quantitative Characterization of Cell Motility in Fluorescence Microscopy</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th IEEE International Symposium on Biomedical Imaging

  • ISBN

    9781538636367

  • ISSN

    1945-7928

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    413-417

  • Publisher name

    IEEE

  • Place of publication

    Washington

  • Event location

    Washington, USA

  • Event date

    Jan 1, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000455045600094