Comparing Multiple Linear Regression, Deep Learning and Multiple Perceptron for Functional Points Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556058" target="_blank" >RIV/70883521:28140/22:63556058 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9925239" target="_blank" >https://ieeexplore.ieee.org/document/9925239</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3215987" target="_blank" >10.1109/ACCESS.2022.3215987</a>
Alternative languages
Result language
angličtina
Original language name
Comparing Multiple Linear Regression, Deep Learning and Multiple Perceptron for Functional Points Estimation
Original language description
This study compares the performance of Pytorch-based Deep Learning, Multiple Perceptron Neural Networks with Multiple Linear Regression in terms of software effort estimations based on function point analysis. This study investigates Adjusted Function Points, Function Point Categories, Industry Sector, and Relative Size. The ISBSG dataset (version 2020/R1) is used as the historical dataset. The effort estimation performance is compared among multiple models by evaluating a prediction level of 0.30 and standardized accuracy. According to the findings, the Multiple Perceptron Neural Network based on Adjusted Function Points combined with Industry Sector predictors yielded 53% and 61% in terms of standardized accuracy and a prediction level of 0.30, respectively. The findings of Pytorch-based Deep Learning are similar to Multiple Perceptron Neural Networks, with even better results than that, with standardized accuracy and a prediction level of 0.30, 72% and 72%, respectively. The results reveal that both the Pytorch-based Deep Learning and Multiple Perceptron model outperformed Multiple Linear Regression and baseline models using the experimental dataset. Furthermore, in the studied dataset, Adjusted Function Points may not contribute to higher accuracy than Function Point Categories.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
Neuveden
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
112187-112198
UT code for WoS article
000875651600001
EID of the result in the Scopus database
2-s2.0-85140787575