Propose-Specific Information Related to Prediction Level at x and Mean Magnitude of Relative Error: A Case Study of Software Effort Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556518" target="_blank" >RIV/70883521:28140/22:63556518 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/24/4649" target="_blank" >https://www.mdpi.com/2227-7390/10/24/4649</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10244649" target="_blank" >10.3390/math10244649</a>
Alternative languages
Result language
angličtina
Original language name
Propose-Specific Information Related to Prediction Level at x and Mean Magnitude of Relative Error: A Case Study of Software Effort Estimation
Original language description
The prediction level at x (PRED(x)) and mean magnitude of relative error (MMRE) are measured based on the magnitude of relative error between real and predicted values. They are the standard metrics that evaluate accurate effort estimates. However, these values might not reveal the magnitude of over-/under-estimation. This study aims to define additional information associated with the PRED(x) and MMRE to help practitioners better interpret those values. We propose the formulas associated with the PRED(x) and MMRE to express the level of scatters of predictive values versus actual values on the left (sig(Left)), on the right (sig(Right)), and on the mean of the scatters (sig). We depict the benefit of the formulas with three use case points datasets. The proposed formulas might contribute to enriching the value of the PRED(x) and MMRE in validating the effort estimation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
10
Issue of the periodical within the volume
24
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000904479300001
EID of the result in the Scopus database
2-s2.0-85144651757