All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Propose-Specific Information Related to Prediction Level at x and Mean Magnitude of Relative Error: A Case Study of Software Effort Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556518" target="_blank" >RIV/70883521:28140/22:63556518 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/10/24/4649" target="_blank" >https://www.mdpi.com/2227-7390/10/24/4649</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10244649" target="_blank" >10.3390/math10244649</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Propose-Specific Information Related to Prediction Level at x and Mean Magnitude of Relative Error: A Case Study of Software Effort Estimation

  • Original language description

    The prediction level at x (PRED(x)) and mean magnitude of relative error (MMRE) are measured based on the magnitude of relative error between real and predicted values. They are the standard metrics that evaluate accurate effort estimates. However, these values might not reveal the magnitude of over-/under-estimation. This study aims to define additional information associated with the PRED(x) and MMRE to help practitioners better interpret those values. We propose the formulas associated with the PRED(x) and MMRE to express the level of scatters of predictive values versus actual values on the left (sig(Left)), on the right (sig(Right)), and on the mean of the scatters (sig). We depict the benefit of the formulas with three use case points datasets. The proposed formulas might contribute to enriching the value of the PRED(x) and MMRE in validating the effort estimation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000904479300001

  • EID of the result in the Scopus database

    2-s2.0-85144651757