Robust control of air flow speed in laboratory model of hot-air tunnel: Multiplicative uncertainty-based approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570418" target="_blank" >RIV/70883521:28140/23:63570418 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21438-7_42" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21438-7_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21438-7_42" target="_blank" >10.1007/978-3-031-21438-7_42</a>
Alternative languages
Result language
angličtina
Original language name
Robust control of air flow speed in laboratory model of hot-air tunnel: Multiplicative uncertainty-based approach
Original language description
This contribution deals with the comparison of control simulations and real-world control experiments on a laboratory model of a hot-air tunnel using robustly relatively stabilizing Proportional-Integral(-Derivative) (PI(D)) controllers. The control synthesis takes advantage of the recently published authors’ work that has presented a method for calculation of robustly relatively stabilizing PID controllers for Linear Time-Invariant (LTI) systems with unstructured uncertainty. Even though controller design uses the plant model with unstructured multiplicative uncertainty, the simulations are based on sampling the uncertain parameters in a corresponding model with parametric uncertainty. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and System (Volume 597 LNNS)
ISBN
978-3-031-21437-0
ISSN
2367-3370
e-ISSN
—
Number of pages
10
Pages from-to
529-538
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlín
Event location
on-line
Event date
Oct 10, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000992418500042