Software cost estimation using neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63572978" target="_blank" >RIV/70883521:28140/23:63572978 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-35311-6_77" target="_blank" >10.1007/978-3-031-35311-6_77</a>
Alternative languages
Result language
angličtina
Original language name
Software cost estimation using neural networks
Original language description
Software Cost Estimation (SCE) is one of the most vital parts when starting a new software engineering project; it helps with allocating resources, managing risks, making informed decisions, and stands in correlation with the success or the failure of a project. Because Software Cost Estimation (SCE) is prone to human bias, solutions started being researched with the aid of Artificial Intelligence (AI) and Machine Learning (ML). This paper will investigate the importance of Software Cost Estimation (SCE). Further, the existing taxonomies and methodologies regarding using neural networks with Software Cost estimation will be compared (COCOMO, GEHO-ANN, OLCE, and -ANN-NEAT). This will be done using evaluation metrics such as RMSE, MMRE, PRED, MAE, etc. After, further research is proposed on why using Deep Reinforcement Learning (DRL) could be very beneficial for developing Software Cost Prediction Models. This technique combines Deep Learning (DL) and Machine Learning (ML) and can solve complex tasks with many variables and a rapidly developing environment. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and Systems, Volume 722 LNNS
ISBN
978-3-031-35310-9
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
831-847
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlín
Event location
Virtual, Online
Event date
Apr 3, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—