All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Software cost estimation using neural networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63572978" target="_blank" >RIV/70883521:28140/23:63572978 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-35311-6_77" target="_blank" >10.1007/978-3-031-35311-6_77</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Software cost estimation using neural networks

  • Original language description

    Software Cost Estimation (SCE) is one of the most vital parts when starting a new software engineering project; it helps with allocating resources, managing risks, making informed decisions, and stands in correlation with the success or the failure of a project. Because Software Cost Estimation (SCE) is prone to human bias, solutions started being researched with the aid of Artificial Intelligence (AI) and Machine Learning (ML). This paper will investigate the importance of Software Cost Estimation (SCE). Further, the existing taxonomies and methodologies regarding using neural networks with Software Cost estimation will be compared (COCOMO, GEHO-ANN, OLCE, and -ANN-NEAT). This will be done using evaluation metrics such as RMSE, MMRE, PRED, MAE, etc. After, further research is proposed on why using Deep Reinforcement Learning (DRL) could be very beneficial for developing Software Cost Prediction Models. This technique combines Deep Learning (DL) and Machine Learning (ML) and can solve complex tasks with many variables and a rapidly developing environment. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems, Volume 722 LNNS

  • ISBN

    978-3-031-35310-9

  • ISSN

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    831-847

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    Virtual, Online

  • Event date

    Apr 3, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article