All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63588058" target="_blank" >RIV/70883521:28140/24:63588058 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-70300-3_30" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70300-3_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70300-3_30" target="_blank" >10.1007/978-3-031-70300-3_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset

  • Original language description

    Software effort estimation plays a pivotal role in software development. The Constructive Cost Model (COCOMO) is one of the most well-known algorithmic models for estimating software effort. However, the precision of these estimates is susceptible to input constants, potentially resulting in inaccuracies. To address this challenge, this research employs the Self-Organizing Migration Algorithm (SOMA), a metaheuristic algorithm, to optimize input constants of the basic COCOMO. This study uses the NASA18 dataset to evaluate the proposed experiment&apos;s performance against the original COCOMO. Evaluation criteria such as MMRE, PRED(0.25), MAE, and MSE, with MSE serving as a fitness function, were employed to validate results. Comparative analysis indicates that optimized COCOMO estimates exhibit improved prediction accuracy. Building on these promising findings, future research will extend testing more deeply with other datasets and involve investigation of the intermediate COCOMO and COCOMO II.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems

  • ISBN

    978-3-031-70299-0

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    13

  • Pages from-to

    416-428

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    Virtual, Online

  • Event date

    Apr 25, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001413910400030