Plasma deposited carbon nanowalls for detection of organic vapours
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F16%3A43875167" target="_blank" >RIV/70883521:28610/16:43875167 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Plasma deposited carbon nanowalls for detection of organic vapours
Original language description
One of the grand challenges in material science is to develop the efficient and low-cost sensors for quick detection of various toxic and carcinogenic molecules, which require rather lengthy procedures or costly techniques for detection. These challenges can be tasked with carbon nanowall-based sensors, where the thin film maze-like structures are deposited on silicon substrates with plasma-enhanced chemical vapour depositions. These sensors demonstrate the high sensitivity in response, selectivity and reversibility for the vapour detection of volatile organic compounds, when tested by an electrical resistance method during adsorption and desorption cycles. The maze-like structures of carbon are composed of several layers of vertically aligned sheets - mostly graphene [1,2]. The structures are deposited from two different plasma gas mixtures generated either in CH4 or C2F6 with H2 [3]. Herein the neutral H atoms are generated in surface wave plasma region driven by a 2.45 GHz microwave power supply and then mixed with CH4/C2F6 and deposited in capacitively coupled plasma region operating at 100 MHz. By variating plasma processing parameters, we are able to achieve even different wall-to-wall distances ranging from 50 nm and 300 nm when prepared on silicon wafer substrate [4]. Further these structures are subjected to different organic vapours of: DMA; urea; iso-pentane; diethyl ether; acetone; methanol; different hydrocarbons; etc. in order to evaluate the relationship between the change in resistance, molecular weight of the adsorbent, the polarity and the bonding/interaction type [4]. For assessment and unravelling the detection mechanisms different surface analyses methods (XPS, Raman, FTIR, SIMS, UV-Vis) are applied prior, between and at the end of molecule detection. The properties of carbon nanowalls are then linked, and will be discussed in respect to the properties of detected molecules.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LO1504" target="_blank" >LO1504: Centre of Polymer Systems Plus</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International workshop on the application of nanomaterials, 15.-16. 11 2016 Zlín
ISBN
978-80-7454-622-8
ISSN
—
e-ISSN
—
Number of pages
1
Pages from-to
1
Publisher name
Tomas Bata University
Place of publication
Zlin
Event location
Zlín
Event date
Nov 15, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—