All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The enhanced MR performance of dimorphic MR suspensions containing either magnetic rods or their non-magnetic analogs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F17%3A63517211" target="_blank" >RIV/70883521:28610/17:63517211 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1361-665X/aa56ef" target="_blank" >http://dx.doi.org/10.1088/1361-665X/aa56ef</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-665X/aa56ef" target="_blank" >10.1088/1361-665X/aa56ef</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The enhanced MR performance of dimorphic MR suspensions containing either magnetic rods or their non-magnetic analogs

  • Original language description

    A co-precipitation method was used to prepare non-magnetic rod-like ferrous oxalate dihydrate (Fe2CO4 • 2H2O) particles that were further turned into iron oxide (Fe3O4) magnetic rod-like particles. A simple precursor-assisted thermal decomposition technique enabled the preservation of the morphology and size of the precursor ferrous oxalate dihydrate particles, thus allowing their magnetic analogs to be obtained. Both types of rod-like particles were used as an additive together with spherical carbonyl iron (CI) particles in novel dimorphic magnetorheological (MR) suspensions. Controlled shear rate mode experiments were performed using a rotational rheometer with a source of an external magnetic field in order to investigate their MR behavior. Moreover, the properties of the novel prepared dimorphic MR (DMR) suspensions were compared with conventional MR suspensions based on spherical CI microparticles. It was found that the DMR suspensions exhibit enhanced MR performance as well as enhanced sedimentation stability in comparison with the MR suspension based on pure CI. The dimorphic suspensions containing magnetic rod-like additives further exhibited significant MR hardening at low shear rates. The properties of CI-based suspensions can be thus optimized by using various additive substances.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Smart Materials and Structures

  • ISSN

    0964-1726

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000395418400004

  • EID of the result in the Scopus database

    2-s2.0-85011347233