All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chitosan-collagen based film for controlled delivery of a combination of short life anesthetics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F19%3A63523602" target="_blank" >RIV/70883521:28610/19:63523602 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0141813019353565" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0141813019353565</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijbiomac.2019.08.228" target="_blank" >10.1016/j.ijbiomac.2019.08.228</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chitosan-collagen based film for controlled delivery of a combination of short life anesthetics

  • Original language description

    The present research was undertaken to develop a chitosan-collagen film for controlled delivery of combinations of local anesthetics. The film has been prepared by casting which is a versatile, rapid and low-cost approach distinguished by high reproducibility. The mechanical, morphological, and physicochemical properties of the films and the impact of the drug loading were evaluated. We showed that the formulations have a good combination of strength and flexibility with high water permeability. Surface morphology investigation indicates a variation in roughness depending on the loaded compound. Release studies were performed in controlled environments and the data processed by the Higuchi model to assess the dynamics of the release. The local anesthetics, lidocaine, tetracaine, and benzocaine, were uniformly distributed within the matrix and released in a rate and magnitude specific for the drug concentration and combination tunable in a range time from 6 h to 24 h. The films dissolve completely in the physiological environment within 24 h without leaving any toxic metabolites as both of the components are recognized as safe. In vitro cytotoxicity and cell proliferation tests performed on human dermal fibroblast demonstrate the biocompatibility and lack of cytotoxicity of the prepared formulations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30404 - Biomaterials (as related to medical implants, devices, sensors)

Result continuities

  • Project

    <a href="/en/project/LO1504" target="_blank" >LO1504: Centre of Polymer Systems Plus</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Biological Macromolecules

  • ISSN

    0141-8130

  • e-ISSN

  • Volume of the periodical

    140

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    1183-1193

  • UT code for WoS article

    000501656200126

  • EID of the result in the Scopus database

    2-s2.0-85071563960