All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Microwave-assisted synthesis of platelet-like cobalt metal-organic framework, its transformation to porous layered cobalt-carbon nanocomposite discs and their utilization as anode materials in sodium-ion batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F20%3A63526504" target="_blank" >RIV/70883521:28610/20:63526504 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/20:00115530

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352152X19310783" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X19310783</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2019.101113" target="_blank" >10.1016/j.est.2019.101113</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Microwave-assisted synthesis of platelet-like cobalt metal-organic framework, its transformation to porous layered cobalt-carbon nanocomposite discs and their utilization as anode materials in sodium-ion batteries

  • Original language description

    In this work a facile microwave-assisted synthesis of a platelet-like cobalt-based metal-organic framework (MOF) material is presented. This material was synthesized from cobalt(II) acetylacetonate and biphenyl-4,4′-dicarboxylic acid (Bpdc) in N,N’-dimethylformamide at 160°C. As-prepared Co-Bpdc MOF product with a platelet-like disc architecture was transformed by heat treatment in a nitrogen atmosphere at 800°C to porous cobalt-carbon nanocomposite discs. It is demonstrated that this synthetic strategy allows for obtaining magnetic microporous carbon layered discs with homogeneously incorporated metallic cobalt nanoparticles with a size of ca. 4 nm. The Co-C nanocomposite material was characterized by a variety of physico-chemical methods. It is shown that both Co-Bpdc MOF and Co-C nanocomposite were electrochemically active in sodium battery system as a material for the negative electrode. The high capacity retention over 80% and capacities over 200 mAh g–1 in the sodium-ion battery systems have been achieved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000516714200067

  • EID of the result in the Scopus database

    2-s2.0-85076021067