Microwave-assisted synthesis of platelet-like cobalt metal-organic framework, its transformation to porous layered cobalt-carbon nanocomposite discs and their utilization as anode materials in sodium-ion batteries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F20%3A63526504" target="_blank" >RIV/70883521:28610/20:63526504 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00115530
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2352152X19310783" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X19310783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2019.101113" target="_blank" >10.1016/j.est.2019.101113</a>
Alternative languages
Result language
angličtina
Original language name
Microwave-assisted synthesis of platelet-like cobalt metal-organic framework, its transformation to porous layered cobalt-carbon nanocomposite discs and their utilization as anode materials in sodium-ion batteries
Original language description
In this work a facile microwave-assisted synthesis of a platelet-like cobalt-based metal-organic framework (MOF) material is presented. This material was synthesized from cobalt(II) acetylacetonate and biphenyl-4,4′-dicarboxylic acid (Bpdc) in N,N’-dimethylformamide at 160°C. As-prepared Co-Bpdc MOF product with a platelet-like disc architecture was transformed by heat treatment in a nitrogen atmosphere at 800°C to porous cobalt-carbon nanocomposite discs. It is demonstrated that this synthetic strategy allows for obtaining magnetic microporous carbon layered discs with homogeneously incorporated metallic cobalt nanoparticles with a size of ca. 4 nm. The Co-C nanocomposite material was characterized by a variety of physico-chemical methods. It is shown that both Co-Bpdc MOF and Co-C nanocomposite were electrochemically active in sodium battery system as a material for the negative electrode. The high capacity retention over 80% and capacities over 200 mAh g–1 in the sodium-ion battery systems have been achieved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
Neuveden
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
—
UT code for WoS article
000516714200067
EID of the result in the Scopus database
2-s2.0-85076021067