Electrospun polyurethane nanofibers coated with polyaniline/polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F22%3A63554378" target="_blank" >RIV/70883521:28610/22:63554378 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2213343722006844" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213343722006844</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2022.107811" target="_blank" >10.1016/j.jece.2022.107811</a>
Alternative languages
Result language
angličtina
Original language name
Electrospun polyurethane nanofibers coated with polyaniline/polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase
Original language description
Estrogenic hormones at significant levels are a serious cause of fish femininity, breast and ovarian cancer as a consequence of hormonal imbalance. This study reports the fabrication of electrospun polyurethane (PU) nanofibers modified by coating with polyaniline/polyvinyl alcohol (PANI/PVA) to form filtration membranes for the enhanced removal of ethinylestradiol (EE2) estrogenic hormone. Structural and morphological character-ization was performed by FTIR, SEM and optical microscopy, while the detection and quantification of EE2 were analysed using HPLC. To understand the material characteristics, the feasibility of the results based on contact time and kinetics to determine the adsorption capacity coated PU nanofibers was further investigated. Findings demonstrated that EE2 best fitted pseudo-second-order kinetics. Furthermore, the adsorption process was opti-mised via response surface methodology using a central composite design model by varying parameters such as pH, temperature, the concentration of adsorbate, and adsorbent dosage to determine. It was found that the modified PU membranes had a maximum adsorption capacity of 2.11 mg/g and high removal percentage effi-ciency of ~82.20% for EE2. Adsorption mechanism and thermodynamics were also evaluated, and the results depicted the adsorption process of EE2 occurred via intraparticle diffusion and was exothermic in nature. Finally, a reusability study was done over six adsorption-desorption cycles to test the consistent effectiveness of the modified PU membrane, which remained above 80% removal capacity. Overall, the findings indicate that treated PU with stabilized PANI particles possess the potential to form an effective adsorbent for eradicating EE2 and other estrogenic hormones from the environment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Environmental Chemical Engineering
ISSN
2213-3437
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
nestrankovano
UT code for WoS article
000796244400001
EID of the result in the Scopus database
2-s2.0-85130217331