All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sub PPM detection of NO2 using strontium doped bismuth ferrite nanostructures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28610%2F23%3A63567118" target="_blank" >RIV/70883521:28610/23:63567118 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2072-666X/14/3/644" target="_blank" >https://www.mdpi.com/2072-666X/14/3/644</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/mi14030644" target="_blank" >10.3390/mi14030644</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sub PPM detection of NO2 using strontium doped bismuth ferrite nanostructures

  • Original language description

    The present work investigates the NO2 sensing properties of acceptor-doped ferrite perovskite nanostructures. The Sr-doped BiFeO3 nanostructures were synthesized by a salt precursor-based modified pechini method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The synthesized materials were drop coated to fabricate chemoresistive gas sensors, delivering a maximum sensitivity of 5.2 towards 2 ppm NO2 at 260 degrees C. The recorded values of response and recovery time are 95 s and 280 s, respectively. The sensor based on Bi0.8Sr0.2FeO3-delta (BSFO) that was operated was shown to have a LOD (limit of detection) as low as 200 ppb. The sensor proved to be promising for repeatability and selectivity measurements, indicating that the Sr doping Bismuth ferrite could be a potentially competitive material for sensing applications. A relevant gas-sensing mechanism is also proposed based on the surface adsorption and reaction behavior of the material.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/EF16_028%2F0006243" target="_blank" >EF16_028/0006243: The Development of Capacity for Research and Development of TBU in Zlín</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Micromachines

  • ISSN

    2072-666X

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000958562600001

  • EID of the result in the Scopus database

    2-s2.0-85151997299