All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524329" target="_blank" >RIV/86652079:_____/20:00524329 - isvavai.cz</a>

  • Result on the web

    <a href="https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00583-8" target="_blank" >https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00583-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13007-020-00583-8" target="_blank" >10.1186/s13007-020-00583-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping

  • Original language description

    Background Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anions significantly accumulate during biotic and abiotic stress and cause oxidative damage and eventually cell death. There is accumulating evidence that ROS are also involved in regulating beneficial plant-microbe interactions, signal transduction and plant growth and development. Due to the relevance of ROS throughout the life cycle and for interaction with the multifactorial environment, the physiological phenotyping of the mechanisms controlling ROS homeostasis is of general importance. Results In this study, we have developed a robust and resource-efficient experimental platform that allows the determination of the activities of the nine key ROS scavenging enzymes from a single extraction that integrates posttranscriptional and posttranslational regulations. The assays were optimized and adapted for a semi-high throughput 96-well assay format. In a case study, we have analyzed tobacco leaves challenged by pathogen infection, drought and salt stress. The three stress factors resulted in distinct activity signatures with differential temporal dynamics. Conclusions This experimental platform proved to be suitable to determine the antioxidant enzyme activity signature in different tissues of monocotyledonous and dicotyledonous model and crop plants. The universal enzymatic extraction procedure combined with the 96-well assay format demonstrated to be a simple, fast and semi-high throughput experimental platform for the precise and robust fingerprinting of nine key antioxidant enzymatic activities in plants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20801 - Environmental biotechnology

Result continuities

  • Project

    <a href="/en/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 – Development of the Centre of Global Climate Change Impacts Studies</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant Methods

  • ISSN

    1746-4811

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    42

  • UT code for WoS article

    000521972700001

  • EID of the result in the Scopus database

    2-s2.0-85082191157