All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00562849" target="_blank" >RIV/86652079:_____/21:00562849 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0034425720305411?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0034425720305411?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rse.2020.112168" target="_blank" >10.1016/j.rse.2020.112168</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring

  • Original language description

    For agricultural applications, identification of non-photosynthetic above-ground vegetation is of great interest as it contributes to assess harvest practices, detecting crop residues or drought events, as well as to better predict the carbon, water and nutrients uptake. While the mapping of green Leaf Area Index (LAI) is well established, current operational retrieval models are not calibrated for LAI estimation over senescent, brown vegetation. This not only leads to an underestimation of LAI when crops are ripening, but is also a missed monitoring opportunity. The high spatial and temporal resolution of Sentinel-2 (52) satellites constellation offers the possibility to estimate brown LAI (LAI(B)) next to green LAI (LAI(G)). By using LAI ground measurements from multiple campaigns associated with airborne or satellite spectra, Gaussian processes regression (GPR) models were developed for both LAI(G) and LAI(B), providing alongside associated uncertainty estimates, which allows to mask out unreliable LAI retrievals with higher uncertainties. A processing chain was implemented to apply both models to 52 images, generating a multiband LAI product at 20 m spatial resolution. The models were adequately validated with insitu data from various European study sites (LAI(G): R-2 = 0.7, RMSE = 0.67 m(2)/m(2), LAI(B): R-2 = 0.62, RMSE = 0.43 m(2)/m(2)). Thanks to the 52 bands in the red edge (B5: 705 nm and B6: 740 nm) and in the shortwave infrared (B12: 2190 nm) a distinction between LAI(G) and LAI(B) can be achieved. To demonstrate the capability of LAI(B) to identify when crops start senescing, 52 time series were processed over multiple European study sites and seasonal maps were produced, which show the onset of crop senescence after the green vegetation peak. Particularly, the LAI(B) product permits the detection of harvest (i.e., sudden drop in LAI(B)) and the determination of crop residues (i.e., remaining LAI(B)), although a better spectral sampling in the shortwave infrared would have been desirable to disentangle brown LAI from soil variability and its perturbing effects. Finally, a single total LAI product was created by merging LAI(G) and LAI(B) estimates, and then compared to the LAI derived from 52 L2B biophysical processor integrated in SNAP. The spatiotemporal analysis results confirmed the improvement of the proposed descriptors with respect to the standard SNAP LAI product accounting only for photosynthetically active green vegetation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

    1879-0704

  • Volume of the periodical

    255

  • Issue of the periodical within the volume

    MAR 15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    112168

  • UT code for WoS article

    000619232500004

  • EID of the result in the Scopus database

    2-s2.0-85096520859