Temperature sensitivity of organic matter mineralization as affected by soil edaphic properties and substrate quality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00557486" target="_blank" >RIV/86652079:_____/22:00557486 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0341816221007591?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0341816221007591?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.catena.2021.105901" target="_blank" >10.1016/j.catena.2021.105901</a>
Alternative languages
Result language
angličtina
Original language name
Temperature sensitivity of organic matter mineralization as affected by soil edaphic properties and substrate quality
Original language description
Warming in ecosystems simultaneously changes soil temperatures and inputs of organic matter into soils. Soil chemical properties and exogenous substrate inputs both have significant effects on the temperature sensitivity (Q(10)) of mineralization. In this study, three soil types (Cambisol, Chernozem and Luvisol) were collected from natural forests at three latitudes in temperate China, whereas the vegetation types are mixed broadleaf-conifer, broadleaf and conifer respectively. The soils differed in soil organic carbon (SOC) contents in the order Chernozem (8.5%), Luvisol (6%), Cambisol (3.6%). The soils were incubated for 40 days at three temperatures (5, 15, and 25 ?). Glucose and maize leaf powder were added as exogenous substrates. To add the same amounts of soluble carbon glucose and maize leaf powder were added at the rate of 2 and 4 mg C g(-1) soil, respectively. Independent of substrate addition, the Chernozem had the highest cumulative CO2 efflux under all temperature treatments. Maize addition accelerated cumulative CO2 efflux more than glucose in most treatments. The Q10 value was higher (P < 0.05) in the Chernozem (1.29 ~ 1.49) than the Cambisol (1.17 ~ 1.28) and the Luvisol (1.10 ~ 1.29), both in the treatments and the control. Soil Q10 was positively correlated (P < 0.001) with DOC and mineral N content, but negatively correlated (P < 0.001) with the MBC/MBN ratio. However, the effect of exogenous substrate addition on Q(10) varied between the different soil types. Addition of both substrates reduced Q(10) by 8.7 ~ 13.4% in the Chernozem and by 10 ~ 14.0% in the Luvisol, whereas maize input increased (P < 0.05) Q10 by 7.6% in the Cambisol. These results suggested that DOC, mineral N and MBC/MBN ratio significantly influenced Q(10), whereas the effects of exogenous substrates on soil respiration and Q10 were highly dependent on SOC content and substrate type.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10503 - Water resources
Result continuities
Project
<a href="/en/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 – Development of the Centre of Global Climate Change Impacts Studies</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Catena
ISSN
0341-8162
e-ISSN
1872-6887
Volume of the periodical
210
Issue of the periodical within the volume
MAR
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
105901
UT code for WoS article
000790433700004
EID of the result in the Scopus database
2-s2.0-85120475243