Radiation Limits the Yield Potential of Main Crops Under Selected Agrivoltaic Designs-A Case Study of a New Shading Simulation Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00603080" target="_blank" >RIV/86652079:_____/24:00603080 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4395/14/11/2511" target="_blank" >https://www.mdpi.com/2073-4395/14/11/2511</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agronomy14112511" target="_blank" >10.3390/agronomy14112511</a>
Alternative languages
Result language
angličtina
Original language name
Radiation Limits the Yield Potential of Main Crops Under Selected Agrivoltaic Designs-A Case Study of a New Shading Simulation Method
Original language description
Agrivoltaics (APVs) represent a growing technology in Europe that enables the co-location of energy and food production in the same field. Photosynthesis requires photosynthetic active radiation, which is reduced by the shadows cast on crops by APV panels. The design of the module rows, material, and field orientation significantly influences the radiation distribution on the ground. In this context, we introduce an innovative approach for the effective simulation of the shading effects of various APV designs. We performed an extensive sensitivity analysis of the photovoltaic (PV) geometry influence on the ground-incident radiation and crop growth of selected cultivars. Simulations (2013-2021) for three representative arable crops in eastern Austria (winter wheat, spring barley, and maize) and seven different APV designs that only limited to the shading effect showed that maize and spring barley experienced the greatest annual above-ground biomass and grain yield reduction (up to 25%), with significant differences between the APV design and the weather conditions. While spring barley had similar decreases within the years, maize was characterized by high variability. Winter wheat had only up to a 10% reduction due to shading and a reduced photosynthetic performance. Cold/humid/cloudy weather during the growing season had more negative yield effects under APVs than dry/hot periods, particularly for summer crops such as maize. The lowest grain yield decline was achieved for all three crops in the APV design in which the modules were oriented to the east at a height of 5 m and mounted on trackers with an inclination of +/-50 degrees. This scenario also resulted in the highest land equivalent ratios (LERs), with values above 1.06. The correct use of a tracker on APV fields is crucial for optimizing agricultural yields and electricity production.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Result continuities
Project
<a href="/en/project/EH22_008%2F0004635" target="_blank" >EH22_008/0004635: AdAgriF - Advanced methods of greenhouse gases emission reduction and sequestration in agriculture and forest landscape for climate change mitigation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Agronomy
ISSN
2073-4395
e-ISSN
2073-4395
Volume of the periodical
14
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
2511
UT code for WoS article
001365743000001
EID of the result in the Scopus database
2-s2.0-85210157386