All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F24%3A00085007" target="_blank" >RIV/00023001:_____/24:00085007 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0966327424001229?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0966327424001229?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.trim.2024.102106" target="_blank" >10.1016/j.trim.2024.102106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons

  • Original language description

    We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30213 - Transplantation

Result continuities

  • Project

    <a href="/en/project/LX22NPO5104" target="_blank" >LX22NPO5104: National Institute for Research of Metabolic and Cardiovascular Diseases</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transplant immunology

  • ISSN

    0966-3274

  • e-ISSN

    1878-5492

  • Volume of the periodical

    86

  • Issue of the periodical within the volume

    October 2024

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    "art. no. 102106"

  • UT code for WoS article

    001295810200001

  • EID of the result in the Scopus database

    2-s2.0-85201099089