All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F24%3A43921396" target="_blank" >RIV/00023752:_____/24:43921396 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10626529/" target="_blank" >https://ieeexplore.ieee.org/document/10626529/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSPW62465.2024.10626529" target="_blank" >10.1109/ICASSPW62465.2024.10626529</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant

  • Original language description

    Large language models (LLMs) have demonstrated impressive generalization capabilities on specific tasks with human-written instruction data. However, the limited quantity, diversity, and professional expertise of such instruction data raise concerns about the performance of LLMs in psychotherapy tasks when provided with domain-specific instructions. To address this, we firstly propose Domain-Specific Assistant Instructions based on AlexanderStreet therapy, and secondly we use an adaption fine-tuning method and retrieval augmented generation method to improve pre-trained LLMs. Through quantitative evaluation of linguistic quality using automatic and human evaluation, we observe that pre-trained LLMs on Psychotherapy Assistant Instructions outperform state-of-the-art LLMs response baselines. Our Assistant-Instruction approach offers a half-annotation method to align pre-trained LLMs with instructions, and provide pre-trained LLMs more psychotherapy knowledge.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004643" target="_blank" >EH22_008/0004643: Brain dynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024

  • ISBN

    979-8-3503-7451-3

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    351-355

  • Publisher name

    IEEE

  • Place of publication

    New Jersey, USA

  • Event location

    Soul, Korea

  • Event date

    Apr 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article