Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377571" target="_blank" >RIV/68407700:21230/24:00377571 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/24:00377571
Result on the web
<a href="https://ieeexplore.ieee.org/document/10626529" target="_blank" >https://ieeexplore.ieee.org/document/10626529</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Domain-Specific Improvement on Psychotherapy Chatbot Using Assistant
Original language description
Large language models (LLMs) have demonstrated impressive generalization capabilities on specific tasks with human-written instruction data. However, the limited quantity, diversity, and professional expertise of such instruction data raise concerns about the performance of LLMs in psychotherapy tasks when provided with domain-specific instructions. To address this, we firstly propose Domain-Specific Assistant Instructions based on AlexanderStreet therapy, and secondly we use an adaption fine-tuning method and retrieval augmented generation method to improve pre-trained LLMs. Through quantitative evaluation of linguistic quality using automatic and human evaluation, we observe that pre-trained LLMs on Psychotherapy Assistant Instructions outperform state-of-the-art LLMs response baselines. Our Assistant-Instruction approach offers a half-annotation method to align pre-trained LLMs with instructions, and provide pre-trained LLMs more psychotherapy knowledge.
Czech name
—
Czech description
—
Classification
Type
W - Workshop organization
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Event location
Seoul
Event country
KR - KOREA, REPUBLIC OF
Event starting date
—
Event ending date
—
Total number of attendees
4400
Foreign attendee count
—
Type of event by attendee nationality
CST - Celostátní akce